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Abstract

This note presents an extension of previous work on physics-based preconditioning of the non-equilibrium radiation

diffusion equations. The new physics-based preconditioner presented in this manuscript is a minor modification to the

operator-split preconditioner presented previously. Results show that the new preconditioner is more effective on test

problems that are more nonlinear.
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In this note we continue our investigation of physics-based preconditioning of radiation diffusion [1].
Recent results show the importance of an implicit and nonlinearly consistent solution method [2,3] and the

importance of preconditioning [4]. In this study we demonstrate that slight modifications to the base op-

erator split preconditioner, presented in [1], significantly enhance its performance on a challenging problem.

The physics model is the same as in [1]. The partial differential equations are:

oE
ot

�r � ðDrrEÞ ¼ raðT 4 � EÞ; ð1Þ
oT
ot

�r � ðDTrT Þ ¼ �raðT 4 � EÞ: ð2Þ

Here, E is radiation energy and T is material temperature. The photon absorption cross-section, ra, is
defined by

ra ¼
z3

T 3
; ð3Þ
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where z is the atomic mass number. The radiation diffusion coefficient, Dr, is given by

DrðT ;EÞ ¼
1

ð3ra þ ðjrEj=EÞÞ : ð4Þ

The flux limiter, jrEj=E, has been modified as described in [5]. Now rE is computed at the cell centers and
is then averaged to the cell face. This new flux limiter increases the size of the discrete stencil and improves

symmetry preservation. The material conduction coefficient, DT, has the following form:

DTðT Þ ¼ 1:0	 10�2T 5=2: ð5Þ

The nonlinear system of equations represented by Eqs. (1) and (2) are solved using the Jacobian-Free

Newton–Krylov method (see [1, Section 1.1, p. 744]). The Krylov solver used to solve the linear systems was

a non-restarted version of Saad�s GMRES [6]. The linear system solved by Newton�s method is

J
dE
dT

� �
¼ �REðE; T Þ

�RT ðE; T Þ

� �
; ð6Þ

where J is the Jacobian matrix and ½dE; dT �T is the vector of unknowns, and ½�REðE; T Þ;�RT ðE; T Þ�T is the
negative of the residual vector.

The residuals in semi-discrete (discrete only in time) form are:

REðEnþ1; T nþ1Þ ¼ Enþ1 � En

Dt
�r � ðDnþ1

r rEnþ1Þ � rnþ1
a ½ðT nþ1Þ4 � Enþ1�; ð7Þ
RT ðEnþ1; T nþ1Þ ¼ T nþ1 � T n

Dt
�r � ðDnþ1

T rT nþ1Þ þ rnþ1
a ½ðT nþ1Þ4 � Enþ1�: ð8Þ

To develop our time split algorithm we will first linearize the transport coefficients at old time, and then
linearize ðT nþ1Þ4 as ðT nÞ3T nþ1. Making these changes in Eqs. (7) and (8) results in

Enþ1 � En

Dt
�r � ðDn

rrEnþ1Þ � rn
a½ðT nÞ3T nþ1 � Enþ1� ¼ 0; ð9Þ
T nþ1 � T n

Dt
�r � ðDn

TrT nþ1Þ þ rn
a½ðT nÞ3T nþ1 � Enþ1� ¼ 0: ð10Þ

We now define dE ¼ Enþ1 � En and dT ¼ T nþ1 � T n and substitute these definitions into Eqs. (9) and (10)

which gives

dE
Dt

�r � ðDn
rrdEÞ � rn

a½ðT nÞ3dT � dE� ¼ �
h
�r � ðDn

rrEnÞ � rn
a½ðT nÞ4 � En�

i
¼ �REðEn; T nÞ; ð11Þ
dT
Dt

�r � ðDn
TrdT Þ þ rn

a½ðT nÞ3dT � dE� ¼ �
h
�r � ðDn

TrT nÞ þ rn
a½ðT nÞ4 � En�

i
¼ �RT ðEn; T nÞ: ð12Þ

The second equal sign in Eqs. (11) and (12) result from recalling the definition of RE and RE in Eqs. (7) and

(8) and noting that the first right-hand side values are the residuals evaluated at old time level n. If we define
E� and T � to be intermediate time levels between En and Enþ1, and T n and T nþ1 and also define

dE� ¼ E� � En and dT � ¼ T � � T n, we can use operator splitting to break Eqs. (11) and (12) into the fol-

lowing four equations:

dE�

Dt
�r � ðDn

rrdE�Þ ¼ �REðEn; T nÞ; ð13Þ
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dT �

Dt
�r � ðDn

TrdT �Þ ¼ �RT ðEn; T nÞ; ð14Þ
dE
Dt

� rn
a½ðT nÞ3dT � dE� ¼ dE�

Dt
; ð15Þ
dT
Dt

þ rn
a½ðT nÞ3dT � dE� ¼ dT �

Dt
: ð16Þ

To advance the operator split (OS) solution from time level n to time level nþ 1, Eqs. (13) and (14) are solved
for dE� and dT � with a simple multigrid linear solver which employs a piecewise constant restriction and

prolongation operator [1]. Then dE and dT are computed by inverting the block diagonal 2	 2 matrix which
comes from Eqs. (15) and (16). The final step is to add dE and dT to En and T n to get the new time values. To

use this algorithm as a preconditioner one simply replaces the vector ½�REðEn; T nÞ;�RT ðEn; T nÞ�T, which is
the right-hand side of Eqs. (13) and (14), with the vector to be preconditioned and the vector, ½dE; dT �T, is the
vector which represents the preconditioner times the vector to be preconditioned. This is the original pre-

conditioner presented in [1].

There are two modifications made to this operator split (OS) preconditioner which yield the new pre-

conditioner presented in this manuscript. The first change is to implement a defect correction step after the

two diffusion operators (Eqs. (13) and (14)) are solved. The motivation for this is to divide the precondi-

tioner into two steps, diffusion then reaction. After the diffusion step is completed, a new linear residual is

computed. This new linear residual is now used as the right-hand side of the reaction part of the operator

(Eqs. (15) and (16)). Therefore, some of the error related to diffusion has been relaxed from the equations
before the reaction step takes place.

The second modification to the preconditioner makes it a nonlinear preconditioner. The basic idea is to

replace the linear block 2	 2 (Eqs. (15) and (16)) with a block Jacobi iteration which includes more of the
nonlinearity in Eqs. (7) and (8). The motivation for this change is to allow the preconditioner to change

between Newton iterations rather than changing only once per time step, such as in the linear operator split

preconditioner of [1] represented by Eqs. (13)–(16). For a test problem where a radiation front interacts

with a rapid change in photon absorption cross-section, ra (which is represented by the test problem of this
manuscript) it is possible that the part of the Jacobian matrix which represents the physics of this inter-
action may change significantly from one Newton iteration to the next. Therefore for this type of problem a

preconditioner which changes on each Newton iteration may be advantageous.

To implement the defect correction change, a new linear residual vector ½RLEðE�; T �Þ;RLT ðE�; T �Þ�T is
computed after Eqs. (13) and (14) are solved. This vector is computed by subtracting the Jacobian matrix,

J, times the solution vector, ½dE�; dT ��T, from the initial right-hand side vector ½�REðEn; T nÞ;�RT ðEn; T nÞ�T
of Eqs. (13) and (14). In equation form this is,

RLEðE�; T �Þ
RLT ðE�; T �Þ

� �
¼ J

dE�

dT �

� �
� �REðEn; T nÞ

�RT ðEn; T nÞ

� �
: ð17Þ

Here the Jacobian matrix, J, times the vector ½dE�; dT ��T is approximated by

J
dE�

dT �

� �



REðE�þ�dE�;T �þ�dT �Þ�REðE�;T �Þ
�

RT ðE�þ�dE�;T �þ�dT �Þ�RT ðE�;T �Þ
�

2
4

3
5; ð18Þ

which is the standard Jacobian-free approximation to the action of the Jacobian matrix [7] (� is set ac-
cording to Eq. (8) of [1, p. 745]). The new linear residual will be used in the second operator split step so this
new preconditioner is a defect correction method.
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The second change replaces the block 2	 2 solution of Eqs. (15) and (16) with a ‘‘Matrix-Lite’’ [8] (block
Jacobi) iteration of the complete Jacobian matrix. In the operator split preconditioner there were two time

steps, the diffusion time step went from time level n to the intermediate time level ‘‘*’’ and then the reaction
time step went from time level n to time level nþ 1 including the ‘‘*’’ level information. Because of the
defect correction, the new preconditioner will now advance diffusion from time level n to time level ‘‘*’’, and
then the ‘‘Matrix Lite’’ will advance both reaction and diffusion from time level ‘‘*’’ to time level nþ 1.
Because of this new approach we need to define dE�� ¼ Enþ1 � E� and dT �� ¼ T nþ1 � T �. Using these new

definitions, the ‘‘Matrix-Lite’’ iteration approximates the solution to the Jacobian matrix, J, times the
vector ½dE��; dT ���T, equals the new right-hand side which is the new linear residual,

J
dE��

dT ��

� �
¼ �RLEðE�; T �Þ

�RLT ðE�; T �Þ

� �
: ð19Þ

To solve Eq. (19) for dE�� and dT ��, we will use a ‘‘Matrix-Lite’’ iteration. The first step in constructing
the ‘‘Matrix-Lite’’ iteration is to partition the Jacobian matrix into two components, the diagonal 2	 2
blocks D, and the off diagonal blocks ðLþUÞ.

J ¼ Dþ ðLþUÞ: ð20Þ

The multiplication of the off-diagonal blocks ðLþUÞ times a vector d�� can be calculated from Eq. (20) by

ðLþUÞd�� ¼ Jd�� �Dd��: ð21Þ

The computation of the Jacobian matrix, J, times the vector d�� is computed using the same Jacobian-free

approximation shown in Eq. (18). Therefore the block Jacobi iteration can be used without ever having to

construct the off diagonal blocks ðLþUÞ. Only the 2	 2 diagonal blocks, D, of the Jacobian matrix need to
be computed and stored. The elements of the 2	 2 diagonal blocks are computed using finite differences and
Eqs. (7) and (8). Since the block 2	 2 diagonal matrix needs to be stored, the algorithm is referred to as
‘‘Matrix-Lite’’ not matrix-free. Therefore, the ‘‘Matrix-Lite’’ iteration to solve Jd ¼ �res can be written as

dkþ1 ¼ D�1ð�res� Jdk þDdkÞ; ð22Þ

where the superscript k is the ‘‘Matrix-Lite’’ iteration index and d0 ¼ 0.
Therefore the newMatrix-Lite defect correction (MLDC) solution can be represented in equation form as

dE�

Dt
�r � ðDn

rrdE�Þ ¼ �REðEn; T nÞ; ð23Þ
dT �

Dt
�r � ðDn

TrdT �Þ ¼ �RT ðEn; T nÞ; ð24Þ
RLEðE�; T �Þ
RLT ðE�; T �Þ

� �
¼ J

dE�

dT �

� �
� �REðEn; T nÞ

�RT ðEn; T nÞ

� �
; ð25Þ
J
dE��

dT ��

� �
¼ �RLEðE�; T �Þ

�RLT ðE�; T �Þ

� �
; ð26Þ
dE ¼ dE� þ dE��; ð27Þ
dT ¼ dT � þ dT ��: ð28Þ



46 V.A. Mousseau, D.A. Knoll / Journal of Computational Physics 190 (2003) 42–51
In the first step of the new Matrix-Lite defect correction (MLDC) solution (23) and (24) are solved for dE�

and dT � using the same simple multigrid algorithm used to solve Eqs. (13) and (14) in the operator split

preconditioner. The additional work required by the new preconditioner comes from the fact that Eqs. (25)

and (26) change with every Newton iteration. In Eq. (25) the Jacobian-free approximation is used to

compute the new linear residuals, RLEðE�; T �Þ and RLT ðE�; T �Þ. Using the new linear residuals computed in
Eq. (25), Eq. (26) is now solved using a ‘‘Matrix-Lite’’ iteration for the variables dE�� and dT ��. The change

from time level n to time level nþ 1 is computed from Eqs. (27) and (28). If the MLDC algorithm is used as
a preconditioner, one simply replaces the vector ½�REðEn; T nÞ;�RT ðEn; T nÞ�T in Eqs. (23)–(25) with the
vector to be preconditioned. Again the vector that represents the preconditioner times the vector to be

preconditioned is ½dE; dT �T. Note dE and dT are computed from Eqs. (27) and (28).
The residual function evaluations, Eqs. (7) and (8), required by the Jacobian-free approximation, which

is employed both in computing the new linear residual in Eq. (25) and in the ‘‘Matrix-Lite’’ iteration, Eq.

(22) make the new preconditioner very expensive relative to the original operator split preconditioner.

The justification for this additional expense required by the Matrix-Lite defect correction (MLDC)

preconditioner is based on the nonlinearity of the problem being solved. If the problem is highly nonlinear

then the Jacobian matrix will change from the first to the last Newton iteration in a time step. This change
in the Jacobian matrix manifests itself as a loss in effectiveness of the preconditioner. In the early Newton

iterations, a Picard linearized preconditioner will still be close to the Jacobian matrix and the precondi-

tioner will work well. However, as the Newton iterations continue and the Jacobian matrix changes, a

preconditioner based on a Picard linearization may actually be worse than no preconditioning. In contrast,

if one has a preconditioner which accurately matches the current Jacobian matrix, this loss of effectiveness

will not occur.

In the results that follow these points will demonstrated. In a problem that is more nonlinear the

expense of the new Matrix-Lite defect correction preconditioner is compensated by the fact that it is still
very effective at large time steps. The results also demonstrate that there are two ways to lower the

nonlinearity of a problem. The first is to simply lower the time step, and the second is to lower the

nonlinearity of the physics being simulated. Note, all results presented in this study are on a 64	 64
grid.

A new test problem is employed in this study which is different than the one used in [1]. The new test

problem has more of a two-dimensional effect and is more difficult to solve. The reason for this diffi-

culty is the larger range in the dynamical time scale of the problem. The new problem is a thermal blast

wave similar in nature to the third problem considered in [2]. In the early part of the blast the dy-
namical time scale is very fast but as the energy spreads out from the blast the dynamical time scale

becomes slower. Because of this wide range of time scales, a time step control algorithm [9] has been

employed.

The test problem consists of a unit square with insulated boundaries for both radiation energy (E) and
material temperature (T ). The domain has a constant z ¼ 1 with two regions of z ¼ zhigh defined by

3

16
< x <

7

16
;
9

16
< y <

13

16

	 

and

9

16
< x <

13

16
;
3

16
< y <

7

16

	 

:

The initial energy is given by

EðrÞ ¼ 0:001þ Eamp exp
�
� r

0:1

� �2�
; ð29Þ

where r is the distance from the lower left corner. Note zhigh and Eamp are defined by the problem de-

scription. For this test problem the material temperature is initially in equilibrium (T ¼ E1=4). The transient
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starts with Dt ¼ 5:0	 10�4 and Dt is allowed to grow 25% per time step until it reaches the set radiation
diffusion CFL limit [9] which is computed by

Dtnþ1 ¼ CFL

(
	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dx2 þ Dy2

p
	

X63;63
i¼2;j¼2

rEn
i;j

��� ���
), X63;63

i¼2;j¼2

En
i;j � En�1

i;j

��� ���
Dtn

8<
:

9=
;: ð30Þ

Note that the boundary cells (i ¼ 1, j ¼ 1, i ¼ 64, and j ¼ 64) have been omitted from the computation of
the time step. The aggressive time step growth of 25% is chosen to force the time step to reach the radiation

CFL limit quickly. This rapid time step growth was chosen to demonstrate the robustness of the precon-

ditioner. A less aggressive time step growth would have been chosen if the goal had been to demonstrate

time convergence of the solution algorithm. It should be noted that this 25% growth rate only controls the

time step size as it ramps up from the initial value to the fixed CFL value and it does not effect the time step

size in the rest of the transient.
The initial temperature (radiation and material) as well as the high z obstacles are shown in Fig. 1 for the

more nonlinear problem (Eamp ¼ 100 and zhigh ¼ 10). The same information is presented in Fig. 2 for the
less nonlinear problem (Eamp ¼ 25 and zhigh ¼ 2:5). By comparing Figs. 1 and 2, one can see that the initial
energy pulse is both higher and steeper in the more nonlinear test problem. In Fig. 3 contours of radiation

temperature (Tr ¼ E1=4) are presented for the more nonlinear problem at its final time of t ¼ 3 for both the
CFL¼ 0.1 case of Table 1 (thin solid contour lines) and the CFL¼ 0.02 case of Table 2 (thick dashed
contour lines). One can see that these two solutions are very close and quantitatively, the average relative

error between the two solutions is 0.35%. Fig. 4 shows the radiation temperature at t ¼ 20 for the less
nonlinear problem. Two observations can be made about the comparison of Figs. 3 and 4. First, the
Fig. 1. More nonlinear test problem initial conditions.



Fig. 2. Less nonlinear test problem initial conditions.
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gradients of radiation temperature are much steeper in Fig. 3 than they are in Fig. 4. Second, in the less
nonlinear problem (Fig. 4) the obstacles have little impact on the solution.

In Table 1, results are presented for the more nonlinear problem. The nonlinearity comes from the high

energy pulse (see Eq. (29) when Eamp ¼ 100) and from the effect of a high ratio in z values (zhigh ¼ 10) on the
photon absorption cross-section (see Eq. (3)). These rapid changes in T and z cause very rapid changes in
Dr, DT, and ra when the time step is chosen to be roughly equal to the time scale that the temperature front
is moving (CFL¼ 0.1). In Table 1, one can see that the single pass ‘‘MLDC 1’’ preconditioner is very
effective, averaging less than four GMRES iterations per Newton iteration, and only requires the total

storage of five Krylov vectors. We can also see here that the additional cost of the second Matrix-Lite
iteration (‘‘MLDC 2’’) did not reduce the amount of work or storage significantly and the CPU time is

higher (note that all of the CPU times have been normalized to emphasize the differences in timing). The

Operator Split preconditioner failed to converge in 500 GMRES iterations which was worse than no

preconditioning at all which averaged 60 GMRES iterations per Newton and required the storage of 162

Krylov vectors. These results show that the old operator split preconditioner actually increased the amount

of work for this highly nonlinear problem.

Table 2 presents results for the same test problem as Table 1 except the time step is made smaller

(CFL¼ 0.02). In Table 1, where the CFL number is 0.1, the thermal front crosses a cell in about 10 time
steps. In Table 2, where the CFL number is 0.02, it take approximately 50 time step for the thermal front to

cross a cell. Therefore, the changes in Dr, DT, and ra are not as fast as they were in Table 1. At this level of
nonlinearity the old operator split (OS) preconditioner is competitive with the new MLDC preconditioner

although it requires significantly more memory (114 Krylov vectors verses four Krylov vectors for MLDC).

It should also be noted that even though the average GMRES iterations per Newton iteration is smaller for



Fig. 3. More nonlinear test problem final radiation temperature: thin solid CFL¼ 0.1, thick dashed CFL¼ 0.02.

Table 1

Eamp ¼ 100, zhigh ¼ 10, CFL¼ 0.1, and tfinal ¼ 3

Preconditioner Average (GMRES/Newton) Maximum GMRES CPU

MLDC 2 2.67 4 1.09

MLDC 1 3.69 5 1.00

OS – 500+ –

None 60.15 162 4.05

Table 2

Eamp ¼ 100, zhigh ¼ 10, CFL¼ 0.02, and tfinal ¼ 3

Preconditioner Average (GMRES/Newton) Maximum GMRES CPU

MLDC 2 1.80 3 3.97

MLDC 1 2.40 4 3.50

OS 8.11 114 3.60

None 20.91 75 5.27
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the operator split preconditioner than no preconditioning (8 vs. 21), the maximum number of Krylov

vectors is larger for the operator split than for no preconditioning (114 vs. 75). This indicates that even at

this time step the operator split preconditioner may be doing more harm than good on some time steps.

Even though the operator split preconditioner is competitive with the MLDC preconditioner for this time

step (3.60 vs. 3.50), one has to recall that the physical transient in Tables 1 and 2 are the same. Therefore the

‘‘MLDC 1’’ preconditioner allowed the Newton–Krylov iteration to reach the final time of the transient (in



Fig. 4. Less nonlinear test problem final radiation temperature.
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Table 1) 3.6 times faster than the operator split preconditioner (in Table 2) by allowing the solution al-

gorithm to work efficiently at a much larger time step.

Table 3 shows results for a test problem that is significantly less nonlinear than the test problem pre-
sented in Tables 1 and 2 (note that the initial energy pulse and the ratio of z values have both been lowered
by a factor of four). This table presents a simulation that is closer to the ones used in the previous work [1].

One can see that for this test problem the operator split preconditioner is significantly better than no

preconditioning and it is competitive in CPU time to the MLDC preconditioner. It should be noted

however that the MLDC preconditioner requires less Krylov vectors to be stored. It is interesting to see that

at these physical conditions the operator split preconditioner can run at large time steps (CFL¼ 0.2) which
allow the thermal front to cross a cell in five time steps. The reason for this is that with a smaller front (since

Eamp is four times smaller) and with smaller z ratio between the objects (since zhigh is four times smaller) the
changes in Dr, DT, and ra are much smaller.
Table 3

Eamp ¼ 25, zhigh ¼ 2:5, CFL¼ 0.2, and tfinal ¼ 20

Preconditioner Average (GMRES/Newton) Maximum GMRES CPU

MLDC 2 3.30 8 0.76

MLDC 1 4.49 10 0.69

OS 11.61 40 0.69

None 34.46 63 1.33
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In this study it has been shown that with minor modifications to an operator split preconditioner, a new

preconditioner can be constructed which is significantly more effective at lowering the number of iterations

required by the Krylov solver. It should be noted that all of these modifications are readily available when a

Jacobian-free Newton–Krylov solution method is employed. In addition, it has been shown for problems

that are very nonlinear this preconditioner may be more efficient at lowering the CPU time than a operator

split preconditioner. It should be noted that for all of the test problems the new preconditioner had the

smallest maximum number of GMRES iterations. For a non-restarted version of GMRES, this maximum

number determines the memory usage. Therefore, this minimization of storage may be reason enough to
investigate this type of preconditioner.
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